
//Some examples for the AM-2916 5V, Addressable LED strips http://www.andymark.com/product-p/am-
2916.htm based on the new WS2812b chipset
//We ran this demo off of our AM-2287 Arduino Ethernet http://www.andymark.com/product-p/am-2287.htm
//http://arduino.cc/en/Main/ArduinoBoardEthernet
//For convenience, everything you need can be purchased in one kit here http://www.andymark.com/product-
p/am-3010.htm

//The FastLED library we use here supports multiple chipsets
//This code requires that the fastspi library be put in your arduino\libraries folder
//Arduino info on how to install software libraries http://arduino.cc/en/Guide/Libraries
//AndyMark, Inc.
//CSK 12/3/2013, 3/17/2014, 3/20/2014, 2/12/2016, 7/1/2016

//***NOTE: This strip runs off of 5V MAX!!!. Applying much more than 5V will damage/destroy you LED
strip!***
//***Handling note: Don't mess with the wiring while the power is on. This can cause voltage spikes ***
//***or sneak ground paths that can damage the LED strip ***

//DO NOT try to power the whole strip (150 LEDs) off the arduino 5v regulator.
//Use the AM-3068 10-30Vin to 5V 10A out stepdown converter http://www.andymark.com/product-p/am-
3068.htm
//At full bright white, the strip can draw 4.5Amps or so.
//This would overheat or burnout the arduino regulator if you tried to drive it from the arduino only
//The BLACK wire is ground, RED is +5V, WHITE is data
//Make sure you connect the BLACK ground from the LED strip to the Arduino ground.
//Communications to the LEDs requires a common ground to work.

//If you are using the AndyMark AM-2297 Arduino Ethernet board then make sure
//you select Tools>Board>Arduino Ethernet from the Arduino IDE menu
//If you are new to working with Arduino a good place to start is here http://arduino.cc/en/Guide/HomePage
//Another new training resource provided by a 3rd party is here:
http://www.arduinoclassroom.com/index.php/arduino-101

//CSK 3/17/2013 Libraries new location
//https://github.com/FastLED/FastLED
//https://github.com/FastLED/FastLED/wiki/Overview

#include "FastLED.h"

#define COLOR_ORDER GRB
#define MAX_BRIGHTNESS 255
//Tell it how many leds are in the strip. AndyMark's 2.5 meter strip has 150 leds
#define NUM_LEDS 265

// This is an array of leds. One item for each led in your strip
CRGB leds[NUM_LEDS];

//CSK 3/17/2014 I moved this to a pin that doesn't conflict with Ethernet functions in case you want to control
LEDs via Ethernet

#define DATA_PIN 6 //White wire from the http://www.andymark.com/product-p/am-2917.htm power
connector

//This function is used to setup things like pins, Serial ports etc.
//Here we specify which chipset our LEDs run off of by our choice of config function
void setup()
{

 // Uncomment one of the following lines for your leds arrangement.
 // FastLED.addLeds<TM1803, DATA_PIN, RGB>(leds, NUM_LEDS);
 // FastLED.addLeds<TM1804, DATA_PIN, RGB>(leds, NUM_LEDS);
 // FastLED.addLeds<TM1809, DATA_PIN, RGB>(leds, NUM_LEDS);
 //FastLED.addLeds<WS2811, DATA_PIN, RGB>(leds, NUM_LEDS);
 // FastLED.addLeds<WS2812, DATA_PIN, RGB>(leds, NUM_LEDS);
 //CSK 2/12/2016 This is the correct chipset for the am-2916 LED strip
 FastLED.addLeds<WS2812B, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS);
 // FastLED.addLeds<UCS1903, DATA_PIN, RGB>(leds, NUM_LEDS);

 //FastLED.addLeds<WS2801, RGB>(leds, NUM_LEDS);

 // FastLED.addLeds<SM16716, RGB>(leds, NUM_LEDS);
 // FastLED.addLeds<LPD8806, RGB>(leds, NUM_LEDS);

 //***This is the chipset in the AM-2640 LED strip***
 //CSK 3/17/2013 Changed to this function to allow direct data and clock pin specification
 //FastLED.addLeds<WS2801, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);

 // FastLED.addLeds<SM16716, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);
 // FastLED.addLeds<LPD8806, DATA_PIN, CLOCK_PIN, RGB>(leds, NUM_LEDS);
 FastLED.clear();
 FastLED.show();
 delay(250);
 //clear() turns all LEDs off
 FastLED.clear();
 FastLED.setBrightness(MAX_BRIGHTNESS);
 fill_solid(leds, NUM_LEDS /*number of leds*/, CRGB(125, 125, 125));
 FastLED.show();
 // start serial port at 9600 bps:
 Serial.begin(9600);
}

void loop()
{
 //This is kind of Arduino's equivalent to Main() in a standard C program
 //This, as the name implies, loops endlessly.
 //https://code.google.com/p/fastspi/wiki/CRGBreference
 FastLED.clear();
 FastLED.show();
 delay(500);
 //CSK 3/20/2014 I added a rainbow function just for grins
 rainbow(1);
 cylon(CRGB::Red, 1, 1);

 cylon(CRGB::Green, 1, 1);
 cylon(CRGB::Blue, 1, 1);
 color_chase(CRGB::Red, 5);
 color_chase(CRGB::DarkOrange, 5);
 color_chase(CRGB::Yellow, 5);
 color_chase(CRGB::Green, 5);
 color_chase(CRGB::Blue, 5);
 color_chase(CRGB::Violet, 5);
 missing_dot_chase(CRGB::White, 5);
 missing_dot_chase(CRGB::Red, 5);
 missing_dot_chase(CRGB::Yellow, 5);
 missing_dot_chase(CRGB::Green, 5);
 missing_dot_chase(CRGB::Cyan, 5);
 missing_dot_chase(CRGB::Blue, 5);
 missing_dot_chase(0x3000cc, 5) ;
}

//These are the functions we have defined to do chase patterns. They are actually called inside the loop() above
//They are meant to demonstrate things such as setting LED colors, controlling brightness
void color_chase(uint32_t color, uint8_t wait)
{
 FastLED.clear();
 //The brightness ranges from 0-255
 //Sets brightness for all LEDS at once
 FastLED.setBrightness(MAX_BRIGHTNESS);
 // Move a block of LEDs

 for(int led_number = 0; led_number < NUM_LEDS - 5; led_number++)
 {
 // Turn our current led ON, then show the leds
 leds[led_number] = color;
 //CSK 4/22/2016 Make it multiple dots on
 leds[led_number + 1] = color;
 leds[led_number + 2] = color;
 leds[led_number + 3] = color;
 leds[led_number + 4] = color;
 leds[led_number + 5] = color;

 // Show the leds (only one of which is has a color set, from above
 // Show turns actually turns on the LEDs
 FastLED.show();

 // Wait a little bit
 delay(wait);

 // Turn our current led back to black for the next loop around
 //CSK 4/22/2016 Turn the dots off
 leds[led_number] = CRGB::Black;
 }
 return;
}

//Move an "empty" dot down the strip
void missing_dot_chase(uint32_t color, uint8_t wait)
{
 //Step thru some brightness levels from max to 10. led_brightness/=2 is a cryptic shorthand way of saying
led_brightness = led_brightness/2
 // for (int led_brightness = MAX_BRIGHTNESS; led_brightness > 10; led_brightness/=2)
 {
 //FastLED.setBrightness(led_brightness);
 //CSK 4/22/2016 Turn brightness down to save batteries since almost all leds are on
 FastLED.setBrightness(25);

 // Start by turning all pixels on:
 //for(int led_number = 0; led_number < NUM_LEDS; led_number++) leds[led_number] = color;
 //https://github.com/FastLED/FastLED/wiki/Controlling-leds
 fill_solid(leds, NUM_LEDS, color);

 // Then display one pixel at a time:
 for(int led_number = 0; led_number < NUM_LEDS - 5; led_number++)
 {
 leds[led_number] = CRGB::Black; // Set new pixel 'off'
 //CSK 4/22/2016
 leds[led_number + 1] = CRGB::Black; // Set new pixel 'off'
 leds[led_number + 2] = CRGB::Black; // Set new pixel 'off'
 leds[led_number + 3] = CRGB::Black; // Set new pixel 'off'
 leds[led_number + 4] = CRGB::Black; // Set new pixel 'off'
 leds[led_number + 5] = CRGB::Black; // Set new pixel 'off'
 if(led_number > 0 && led_number < NUM_LEDS)
 {
 leds[led_number-1] = color; // Set previous pixel 'on'
 }
 FastLED.show();
 delay(wait);
 }
 }
 return;
}

//Cylon - LED sweeps back and forth, with the color, delay and number of cycles of your choice
void cylon(CRGB color, uint16_t wait, uint8_t number_of_cycles)
{
 FastLED.setBrightness(MAX_BRIGHTNESS);
 for (uint8_t times = 0; times<=number_of_cycles; times++)
 {
 // Make it look like one LED is moving in one direction
 for(int led_number = 0; led_number < NUM_LEDS; led_number++)
 {
 //Apply the color that was passed into the function
 leds[led_number] = color;
 //Actually turn on the LED we just set
 FastLED.show();
 // Turn it back off
 leds[led_number] = CRGB::Black;

 // Pause before "going" to next LED
 delay(wait);
 }

 // Now "move" the LED the other direction
 for(int led_number = NUM_LEDS-1; led_number >= 0; led_number--)
 {
 //Apply the color that was passed into the function
 leds[led_number] = color;
 //Actually turn on the LED we just set
 FastLED.show();
 // Turn it back off
 leds[led_number] = CRGB::Black;
 // Pause before "going" to next LED
 delay(wait);
 }
 }
 return;
}

void rainbow(uint8_t wait)
{

 uint16_t hue;
 FastLED.clear();

 for(hue=10; hue<255*3; hue++)
 {

 fill_rainbow(&(leds[0]), NUM_LEDS /*led count*/, hue /*starting hue*/);
 FastLED.show();
 delay(wait);
 }
 return;
}

